Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 65(12): 2147-2155, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34402987

RESUMEN

The present study evaluated the general welfare state of two strains of transgenic goats bred in a region with a hot and humid tropical climate. Nine females were used, being three transgenic for human lysozyme (hLZ group), three transgenic for human glucocerebrosidase (hGCase group), and three non-transgenic (control group). The temperature and humidity index (THI) were recorded during the morning, afternoon, and evening. The physiological parameters measured were respiratory rate, heart rate, and rectal and vaginal temperatures. Venous blood samples were collected using Vacutainer® tubes containing 10% ethylenediaminetetraacetic acid (EDTA). Also, analysis of erythrogram, leukogram, and some biochemical parameters of serum was performed. It was observed that the afternoon shift presented the largest THI, being potentially more impactful on the physiology of animals. In general, respiratory and heart rates were higher in transgenic animals, especially in the hLZ group compared to the control group (P < 0.05). Regarding the hematological parameters, the quantification of red blood cells, hemoglobin, and hematocrit was significantly lower (P < 0.05) in the hGCase group compared to that in the hLZ and control. The leukocyte count was considerably lower (P < 0.05) in the hLZ group compared to that in the hGCase and control. Correlation analysis showed that the increase in THI was associated with a change in physiological parameters normally used as indicators of thermal stress. Despite the differences found among the experimental groups, all the physiological parameters remained within the normal limits recommended for the goat species. Further studies involving a larger number of animals from different categories should be carried out to elucidate the impacts that transgenesis can have on animal welfare under different THI conditions.


Asunto(s)
Cabras , Clima Tropical , Animales , Animales Modificados Genéticamente , Femenino , Cabras/genética , Calor , Humedad , Temperatura
2.
PLoS One ; 15(9): e0239435, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32946490

RESUMEN

The genotyping of genetically-modified cells is a crucial step in studies of transgenics and genomic editing with systems such as CRISPR/Cas. The detection of genome editing events can be directly related to the genotyping methodology used, which is influenced by its costs, since many experiments require the analysis of a large number of samples. The aim of this study was to compare the performance of direct lysis methods of genomic DNA (gDNA) extraction for the detection of knockins and knockouts in primary goat cells. Initially, three gDNA extraction protocols (protocol A, heat denaturation/freeze-thaw in water; protocol B, heat denaturation/proteinase K; and protocol C, CellsDirect Kit) were tested using different quantities (1,000, 5,000 and 10,000 cells) and types of goat primary cells (fibroblasts and goat mammary epithelial cells-GMECs) for subsequent validation by PCR amplification of small (GAPDH) and large amplicons (hLF transgene). All protocols were successful in the detection of the small amplicon; however, in GMECs, only protocol B resulted efficient amplification (protocol A-0%, protocol B-93%, protocol C-13.33%, P <0.05). In a proof-of-principle experiment, the TP53 gene was knocked out in GMECs by CRISPR/Cas9-mediated deletion while constructs containing the anti-VEGF monoclonal antibody (pBC-anti-VEGF) and bacterial L-Asparaginase (pBC-ASNase) transgenes were knocked-in separately in fibroblasts. Detection of successful editing was performed using protocol B and PCR. The integration rates of the pBC-ASNase and pBC-anti-VEGF transgenes were 93.6% and 72%, respectively, as per PCR. The efficiency of biallelic editing in GMECs using CRISPR/Cas9 for the TP53 deletion was 5.4%. Our results suggest that protocol B (heat denaturation/proteinase K) can be used as an inexpensive and quick methodology for detecting genetic modifications in different types of primary goat cells, with efficiency rates consistent with values previously described in the literature when using extraction kits or more complex proteinase K formulations.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Análisis Costo-Beneficio , ADN/genética , ADN/aislamiento & purificación , Edición Génica , Transgenes/genética , Animales , Secuencia de Bases , Fibroblastos/citología , Fibroblastos/metabolismo , Cabras
3.
BMC Res Notes ; 12(1): 794, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806048

RESUMEN

OBJECTIVE: L-Asparaginase (ASNase) is an enzyme used in the treatment of acute lymphoblastic leukemia (ALL). As the therapeutic ASNases has bacterial origin, severe side effects are associated with its use, among them hypersensitivity and inactivation of the enzyme. In this context, the objective of this work was to produce a recombinant ASNase of bacterial origin in human cells in order to determine the presence and consequences of potential post-translational modifications on the enzyme. RESULTS: Recombinant ASNase was expressed in human cells with a molecular weight of 60 kDa, larger than in Escherichia coli, which is 35 kDa. N-glycosylation analysis demonstrated that the increased molecular weight resulted from the addition of glycans to the protein by mammalian cells. The glycosylated ASNase presented in vitro activity at physiological pH and temperature. Given that glycosylation can act to reduce antigenicity by masking protein epitopes, our data may contribute to the development of an alternative ASNase in the treatment of ALL in patients who demonstrate side effects to currently marketed enzymes.


Asunto(s)
Asparaginasa/genética , Escherichia coli/enzimología , Asparaginasa/metabolismo , Clonación Molecular , Escherichia coli/genética , Glicosilación , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...